Soluções de Machine Learning no Governo

WIDaT 2019

- Auditor-Fiscal Leon Sólon da Silva -

Agenda

Motivação

Sistema de Seleção Aduaneira por Aprendizado de Máquina - SISAM

Identificação de Grupos Empresariais com Market Basket Analysis

 Modelos Preditivos para Seleção de Compensação de Crédito Tributário

Outras iniciativas

Crises financeiras e restrições orçamentárias

 Redução de pessoal nas administrações tributárias e aduaneiras em todo o mundo

 Aumento na carga de trabalho (contribuintes, solicitações de compensação, importação e exportação)

Saída: pedir mais gente ou trabalhar melhor?

■ Trabalhar melhor = selecionar melhor o que deve ser trabalhado

 Volume de dados não permite mais análises empíricas sem auxílio de ferramentas

 Análise de dados: encontrar padrões, correlações e realizar predições a partir de massas de dados e conhecimento de especialistas nos processos de trabalho

Ciência de Dados - Modelos Preditivos

 A partir de bases com resultados conhecidos, inferir novas avaliações a partir de modelos preditivos

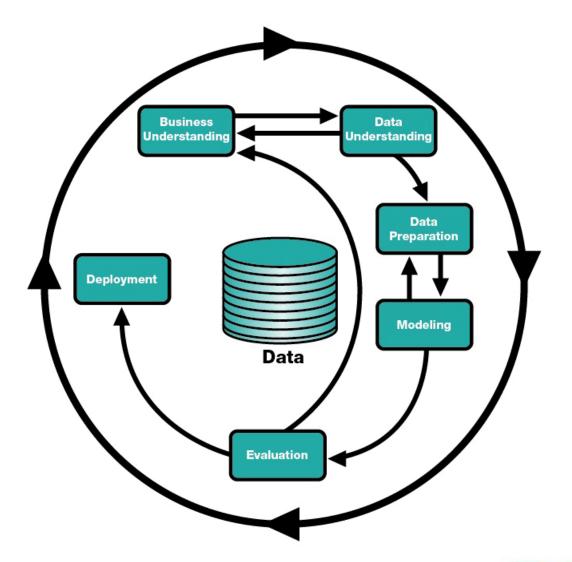
 Extrair conhecimento das bases de dados (Knowledge-Discovery in Database)

Ciência de Dados - Modelos Preditivos

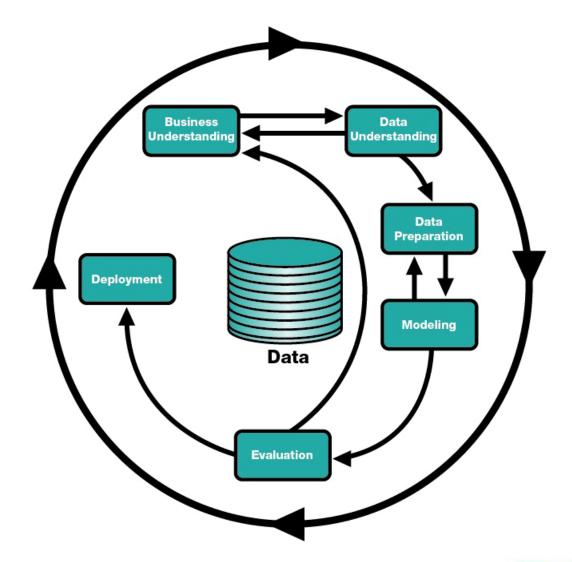
 Exemplos de aplicações: quais as chances de um paciente ser diabético conhecendo-se um história de milhões de diagnósticos e perfis de outros pacientes

 Diversas ferramentas estatísticas e de inteligência artificial: árvores de decisão, regressão logística, redes bayesianas, redes neurais

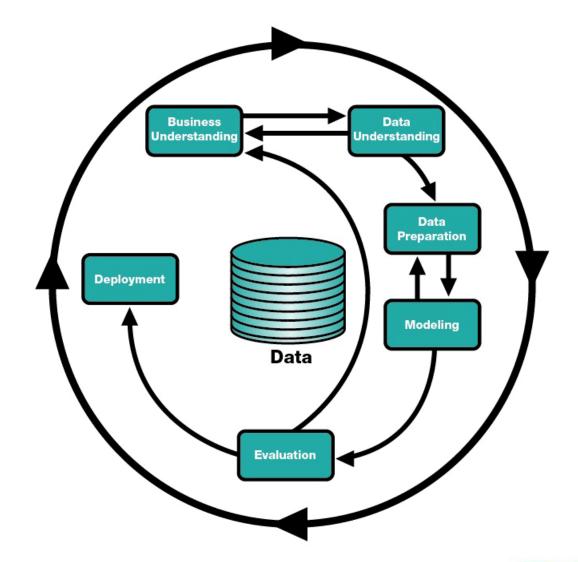
Cross Industry
Stardard Process
for Data Mining
(CRISP-DM)



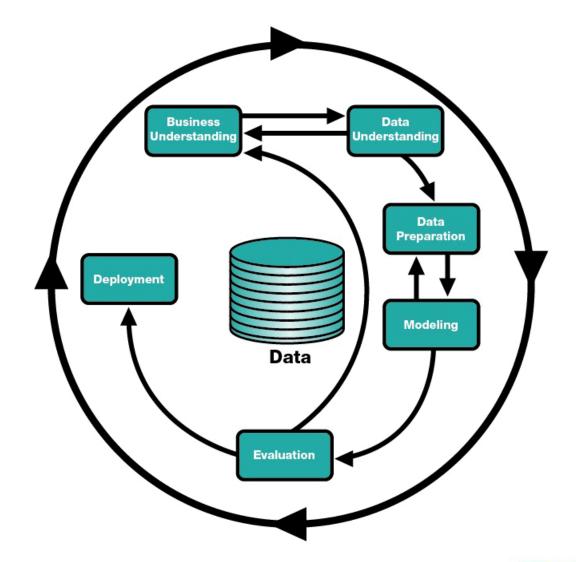
Entendimento do Negócio



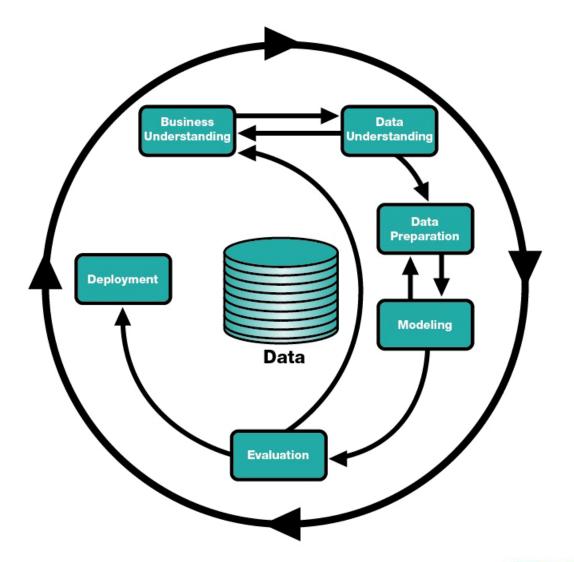
Entendimento dos Dados



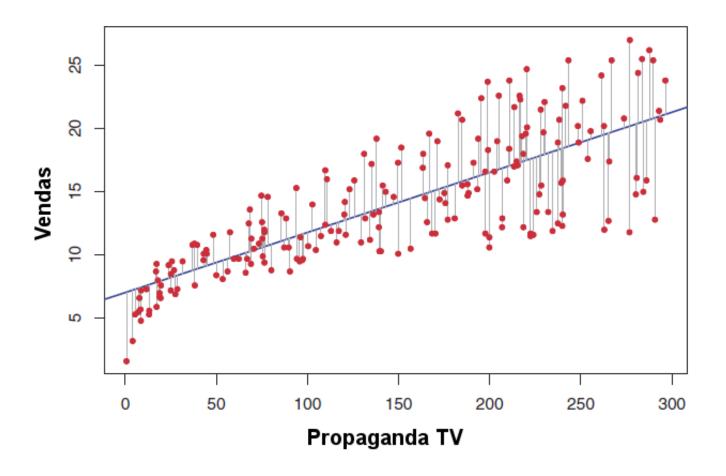
Preparação dos Dados



Modelagem



Regressão Linear

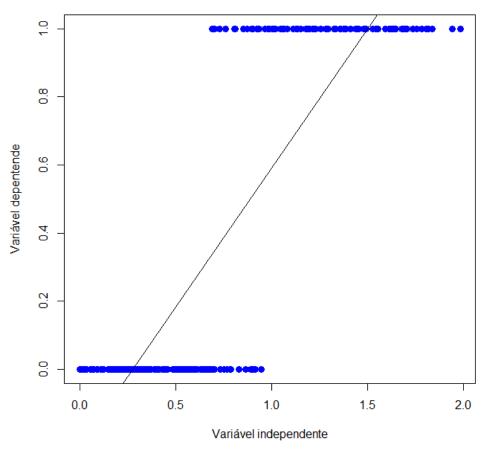


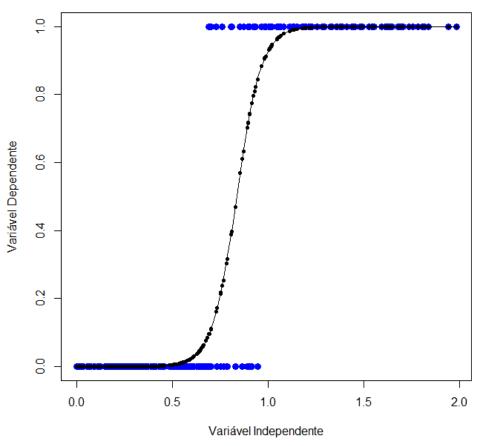
Regressão Linear vs Regressão Logística

$$Y \approx \beta_0 + \beta_1 x_1 + \epsilon$$
,

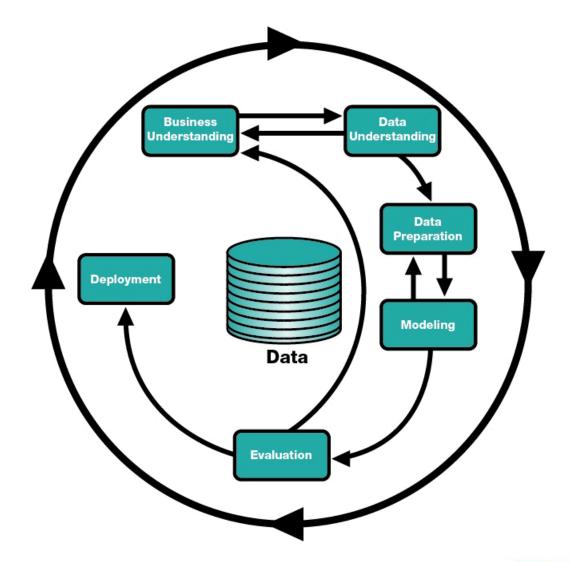
$$\approx \beta_0 + \beta_1 x_1 + \epsilon,$$

$$\log(\frac{P(X)}{1 - P(X)}) = \beta_0 + \beta_1 X_1$$

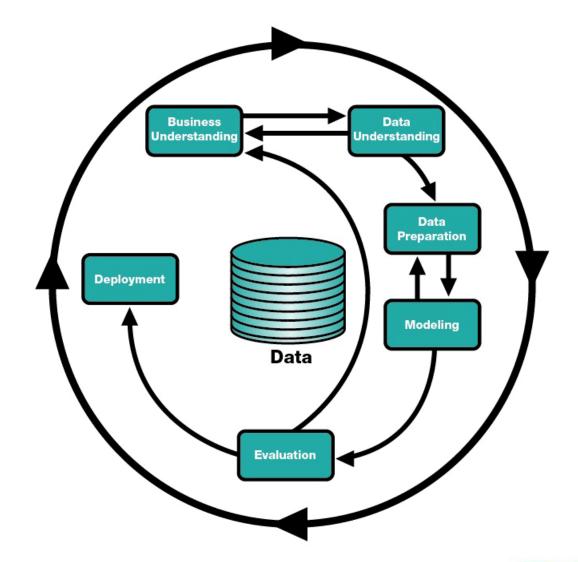




Avaliação



Implementação



Iniciativas no Governo

- No Governo temos inúmeros exemplos (dicas para o WIDaT 2020?):
 - TCU (LABCONTAS)
 - CGU (Observatório de Despesa pública)
 - CADE
 - Casa Civil
 - BB
 - FNDE (juro que não editei os slides!!! O.o)
- Governo? Governo é muito grande, vamos falar só da Receita?

Iniciativas na Receita Federal

- Iniciativas "pessoais" num estágio inicial
- Projetos institucionais
- Criação de laboratórios de inovação e investimento em capacitação
- Hackathon (acabou hoje e terminei em 13º O.o)

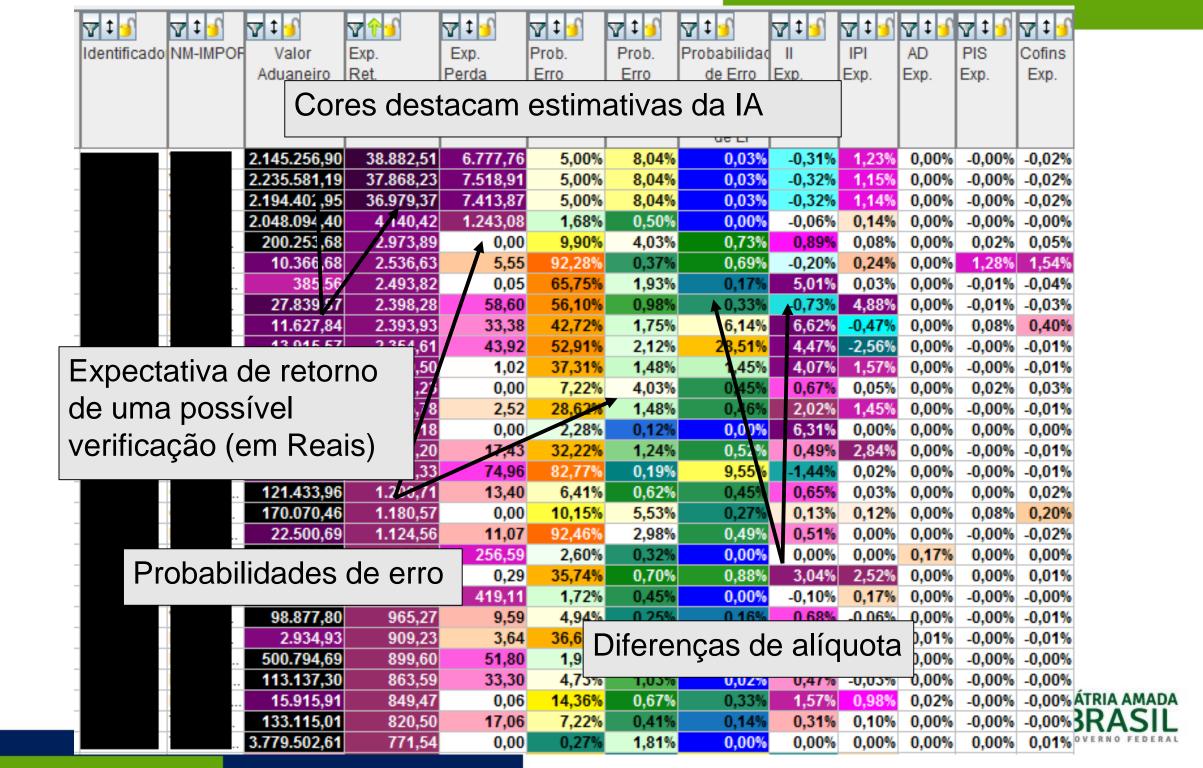
• Problema: milhões de importações por ano vs meia dúzia de auditores (força de expressão, hein!:)

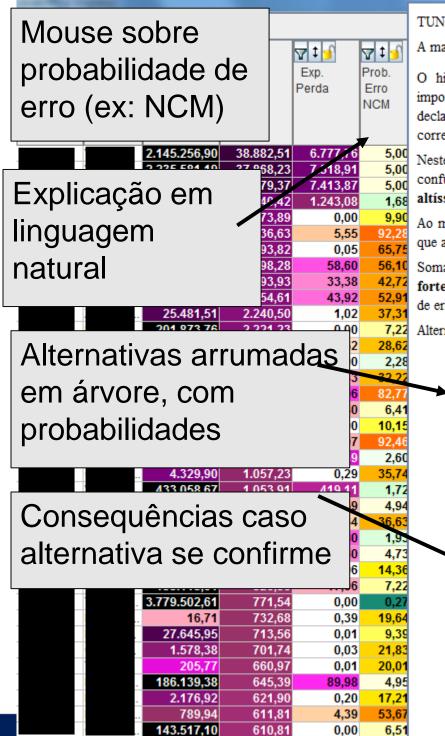
 Solução: utilizar algoritmos e métodos prontos? Para Dr. Jambeiro não bastou, criou modelo probabilístico próprio para atender o problema

Como faz: apresenta níveis de riscos de diferentes situações

- Aprende com o histórico de Declarações de Importação (DI), inspecionadas ou não.
- Analisa nova DIs
 - Calcula a probabilidade de cerca de 30 tipos de erro
 - Para cada campo que pode estar errado, calcula a probabilidade de cada valor possível seja o correto
 - Avalia as consequências tributárias e administrativas
 - Calcula a expectativa de retorno para cada inspeção possível
 - Gera explicações em linguagem natural (isso é muito fera!!! <3)
 - Mais de 30% de todos os redirecionamentos de DIs para canais de conferência vem de sugestões deste sistema

- Erro na Nomenclatura Comum do Mercosul (NCM)
- Erro na descrição das mercadorias
- Erro no país de origem
- Falta de Licenciamento
- Erros em alíquotas de tributos
 - II, IPI, Antidumping, PIS, Cofins
 - Ex tarifários, Regimes tributários, Acordos tarifários
- Próxima versão
 - Erros no valor e na quantidade de mercadorias





TUNGSTENIO EM PO 1,0 MICRON, W 1,0 - REF. WC0C050M

A maior probabilidade de erro de classificação fiscal nesta adição foi estimada em 92.46%

O histórico **específico deste importador** define um contexto, onde são esperadas tantas importações de produtos classificados em NCMs que costumam ser confundidas com a NCM declarada (28499030) que é **mais fácil** ela **ter sido informada erroneamente** do que corresponder a um produto realmente sendo importado.

Neste histórico, uma mercadoria do subitem 81011000 da ncm é mais comum e constam confusões deste subitem específico com a NCM declarada que o tornam uma suspeita de altíssima relevancia.

Ao mesmo tempo, o fato do fabricante ter sido FILMS S.P.A. favorece **fortemente** a ideia de que a NCM real é, de fato, a **81011000**, aumentando bastante a suspeita de erro de classificação.

Soma-se, a isto o fato de que , estatisticamente, a descrição da mercadoria favorece a **fortemente** ideia de que a NCM real é mesmo a **81011000**. Isto obviamente aumenta a suspeita de erro de classificação fiscal.

Alternativas prováveis caso haja erro de classificação fical:

- <u>81 (SCI) (TW) (</u>P=91.16%) Outros metais comuns; ceramais (cermets); obras dessas matérias
 - □ 8101 (SCI) (TW) (P=75.25%) Tungstênio (volfrâmio) e suas obras, incluindo os desperdicios e residuos.
 - <u>81011000 (SCI) (TW) [</u>II=2.0%][IPI=0%] (**P**=40.09%) Pós
 - <u>81019 (SCI) (TW) (</u>P=28.88%) Outros:
 - □ 81019400 (SCI) (TW) [II=2.0%][IPI=0%] (P=12.49%) Tungstênio (volfrâmio) em formas brutas, incluindo as barras simplesmente obtidas por sinterização
 - □ 810199 (SCI) (TW) (P=11.17%) Outros
 - <u>81019990 (SCI) (TW) [</u>II=2.0%][IPI=0%] (**P=5.93%**) Outros
 - 81019910 (SCI) (TW) [II=2.0%][IPI=0%] (P=5.24%) Do tipo dos utilizados na fabricação de contatos elétricos
 - □ 81019600 (SCI) (TW) [II=2.0%][IPI=0%] (P=5.23%) Fios
 - □ 8103 (SCI) (TW) (P=7,28%) Tântalo e suas obras, incluindo os desperdicios e residuos.
 - 81032000 (SCI) (TW) [II=2.0%][IPI=0%] (P=7.28%) Tântalo em formas brutas, incluindo as barras simplesmente obtidas por sinterização; pós
 - □ 8105 (SCI) (TW) (P=6.5%) (DAE=4.9%) Mates de cobalto e outros produtos intermediários da metalurgia do cobalto; cobalto e suas obras, incluindo os

Resultados

Taxa de seleção	1%	2%	5%	10%	20%	50%	75%
Recuperação para erros de NCM	22%	34%	52%	66%	81%	96%	99%
Recuperação para subfaturamento de 50%	27%	39%	54%	63%	79%	95%	99%

Retornos dos usuários

- Com este sistema pegamos erros que certamente escapariam em meio aos milhares de itens importados por dia
- Como o sistema, fiscais novos tornam-se produtivos mais rápido
- O sistema induz uma melhoria no comportamento dos importadores

Características do SISAM

- Tecnologia central criada para RFB
 - Não usa ferramentas ou bibliotecas
 - Criada na minha tese de doutorado e estendida no desenvolvimento do Sisam
 - Propriedades convenientes
 - Aprendizado incremental e distribuído
 - Permite subtração de bases para compensação de viés
 - Se adapta a mudanças na NCM sem perder aprendizado anterior
 - Rápido na detecção de novos erros
- Preocupações éticas
 - Sem caixas pretas
 - Existe uma pressão externa para isto
 - Sisam foi discutido na Universidade de Florença

 Problema: dificuldade de encontrar grupos empresariais em milhares de empresas com milhões de sócios

 Solução: utilizar algoritmo de market basket analysis para identificar características das empresas e sócios que os tornam próximos para facilitar seleção de contribuintes

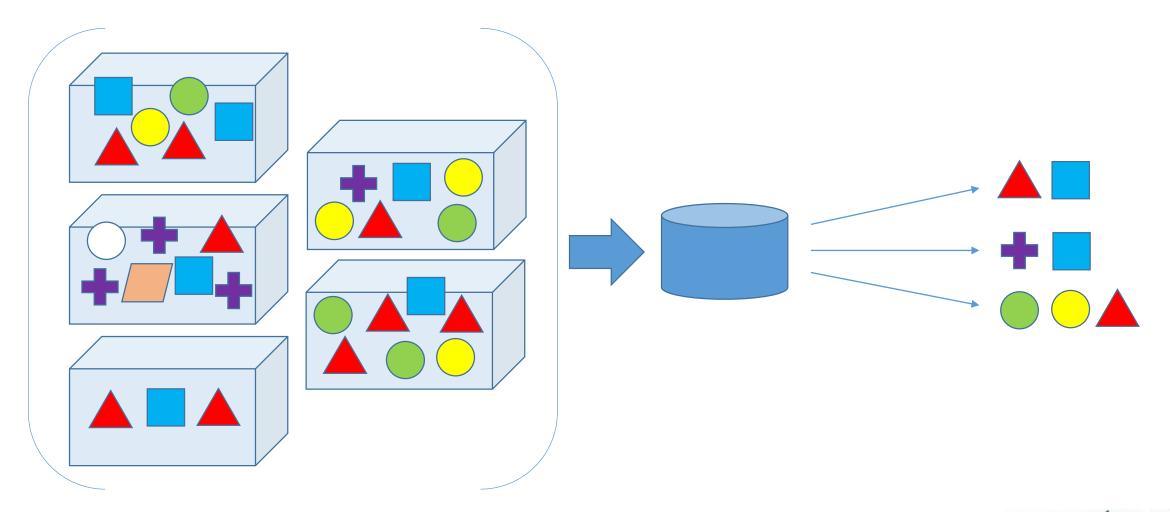
Como faz: mostra possíveis grupos empresariais

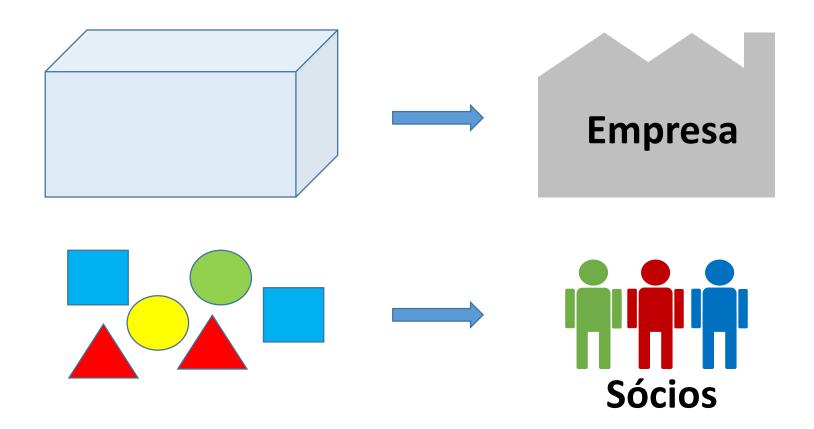
Visão integral do contribuinte

Análise de grupos de comportamentos similares

 Agrupamento a partir de informações não somente das empresas, mas também dos sócios

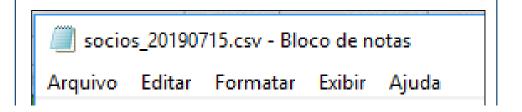
Melhoria na análise de risco para melhor seleção de quem será fiscalizado





Receita Data 18.989.178 linhas

(em 15/07/2019)




```
import pandas as pd
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
from apyori import apriori
import time
from IPython.display import clear_output
%matplotlib inline
```

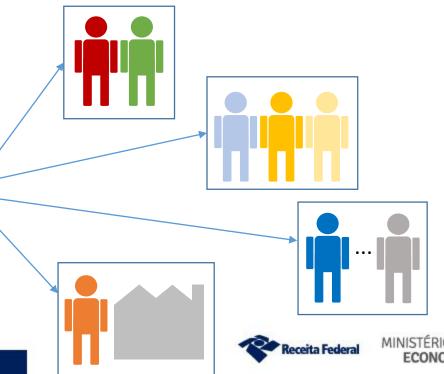

apyori 1.1.1

pip install apyori 📙

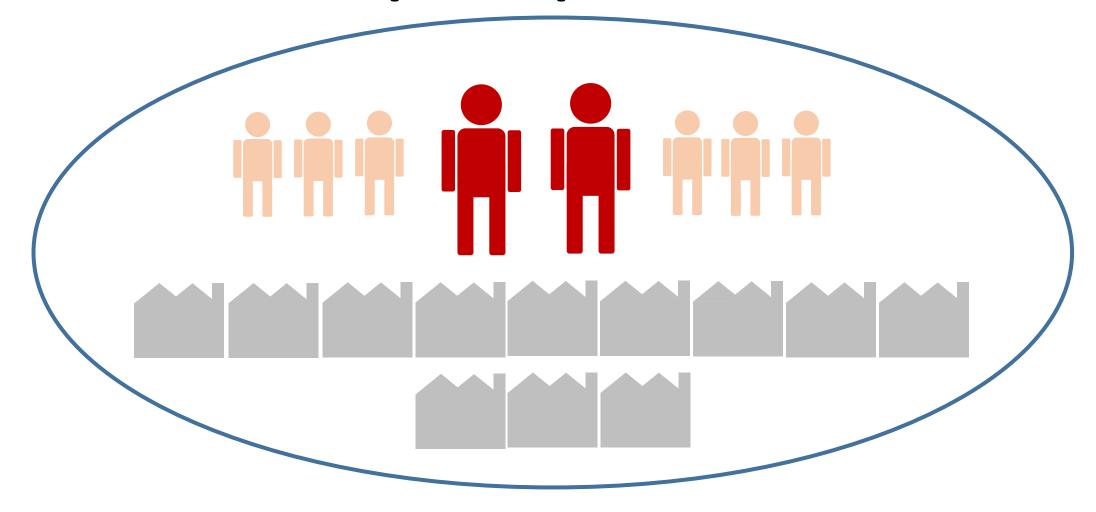
https://pypi.org/project/apyori/

```
regras = apriori(trans2, min_support=(10/tamanho), min_confidence=0.8)
```

RelationRecord(items=frozenset({'13290326 ', '00610508 '}). support=0.004190519606897701, ordered
_statistics=[OrderedStatistic(items_base=frozenset({'00610508 '}), items_add=frozenset({'13290326}
)), confidence=0.9502982107355866, lift=198.16757953194912), OrderedStatistic(items_base=frozenset
({'13290326 '}), items_add=frozenset({'00610508 '}), confidence=0.8738574040219379, lift=198.1675
795319491)])



Grupo Empresarial



3.747 grupos de sócios

Sócios Principais

Variação: 2 – 40

Total: 10.631

Sócios Secundários

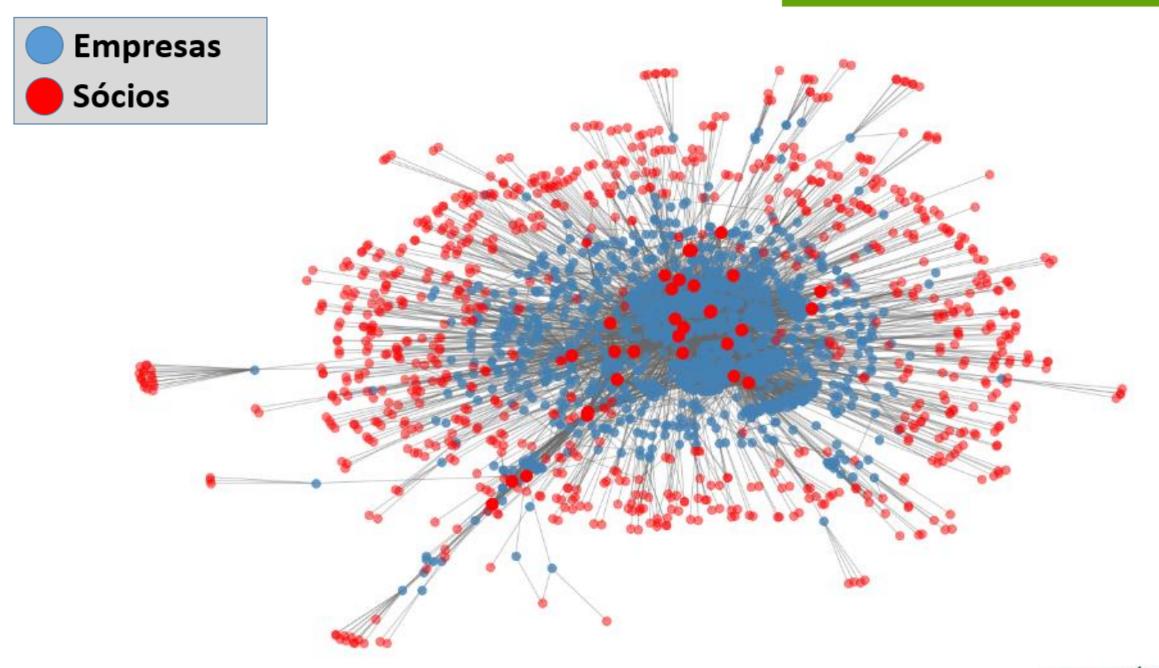
Variação: 0 – 2.903

Total: 119.754

Empresas

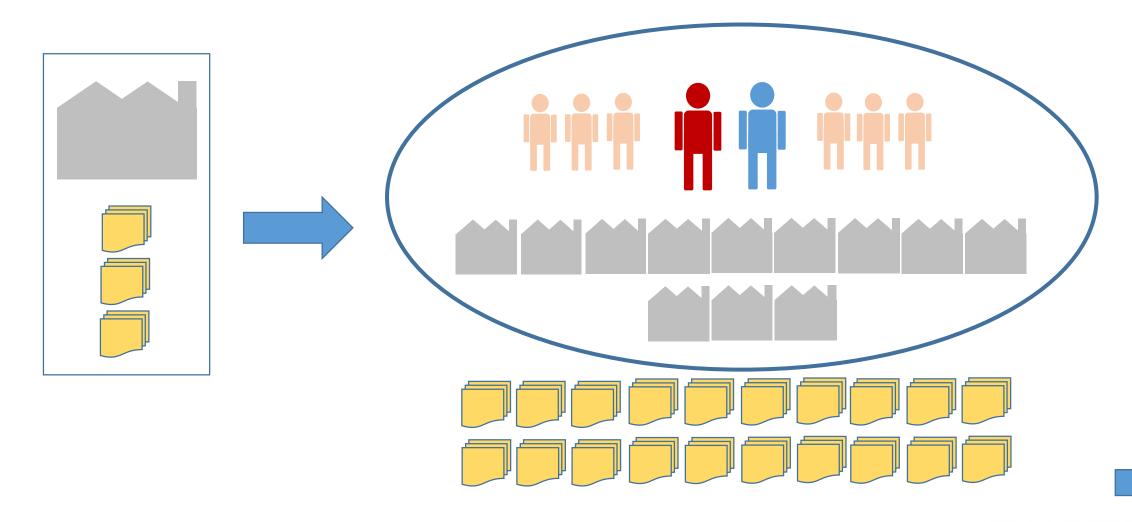
Variação: 10 – 1.532

Total: 120.279



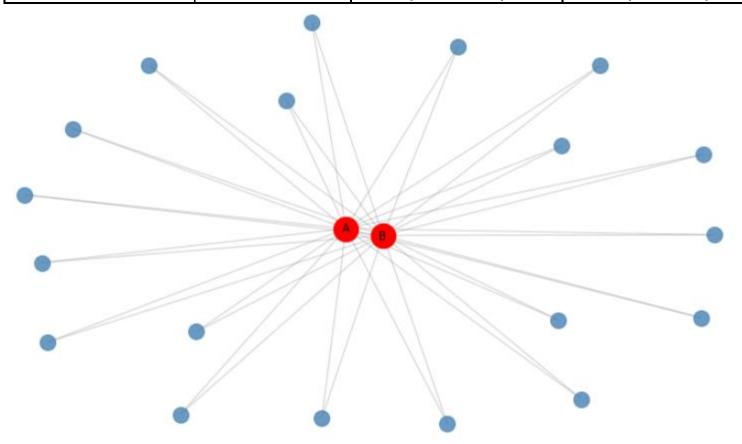
Aplicações

Otimização de Recursos:



Desenquadramento de Empresas do Simples Nacional:

nº Empresas	nº Sócios	Situação Cadastral	Optante Simples		
19	2	(Ativa: 19)	(Sim: 19)		



CNAE Principal

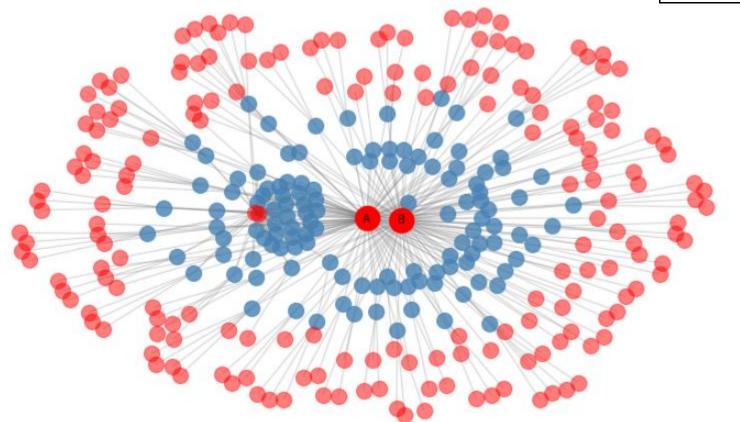
(Comércio varejista de artigos do vestuário e acessórios: 18),

(Confec. peças vest.,exc. roupas íntimas e confec. sob medida: 1)

Identificação de "empresas noteiras":

nº Empresas	nº Sócios	Situação Cadastral			
122		(Suspensa: 95),			
	188	(Baixada: 26),			
		(Ativa: 1)			

Endereço	Qte
RUA LUA CRESCENTE 50 JARDIM DO LUAR FAZENDINHA	113
RUA LUA MINGUANTE 56 JARDIM DO LUAR FAZENDINHA	4
RUA LUA MINGUANTE 50 FAZENDINHA	4
RUA LUA CRESCENTE 58 JARDIM DO LUAR FAZENDINHA	1



Abertura Empresa	Qte
20111011	7
20081218	5
20081219	4
20101028	4
20110926	4
20111007	4
20070109	3
20070913	ď

Imputação de Responsabilidade Solidária:

Detalhame	nto das Empresas Participantes	F						
CNPJ	Razão Social	Situação Cadastral	Abertura Empresa	RF	Nome DRF	Devedor	Total Débitos	Arrecadação 2019
CHICATON HARRA	ERRORIES.	Ativa	10/08/1967	经验	ter Hadis	11.035.299,50	14.800.099,90	0,00

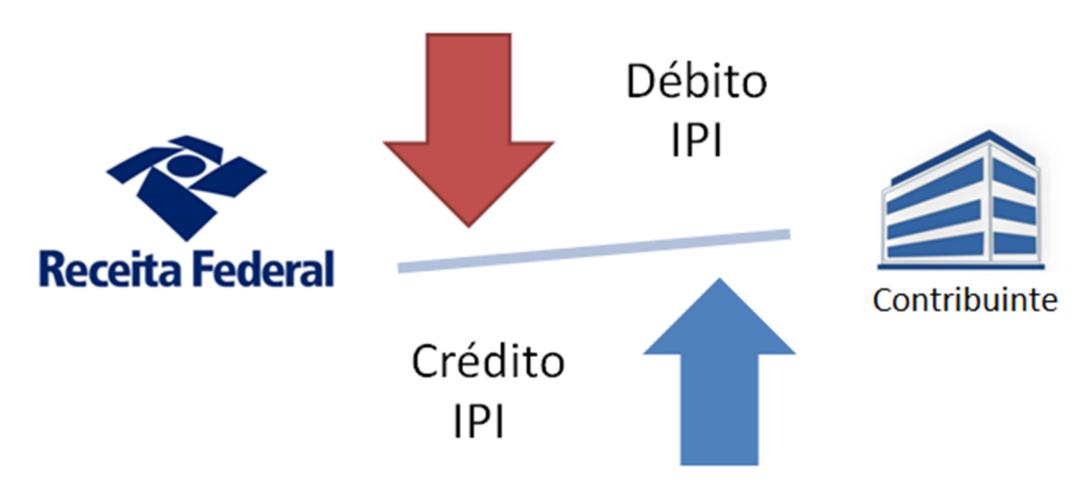
Detalhamento dos Sócios Participantes (principais)									
CPF/CNPJ	Nome	Sit uação Cadastral	Patrimonio (2019)	Ind Tend Patr	Mov Financeira (2018)	Ind Mov Fin	Rend Tributário (2019)	Rend Total (2019)	Total Débitos
Wash Holy	Patrick of Brack City Service	Regular	81.841.737,29	0,03	841.294,74	-0,89	22.920,17	283.846,11	-00
A THE PARTY	Moreovery of the state of the	Regular	28.764.975,29	0,59	12.141.164,63	-0,79	286.242,22	7.851.742,23	-00
Problement	n/with Proping	Regular	11.537.034,16	0,03	5.513.021,62	-0,34	25,252,02	533.503,76	-00
Registro: 14	1 de 30 🕨 🕪 🎉 Sem Filtro Pesquisar	1) I				**	

 Problema: milhares de pedidos de compensações vs meia dúzia de auditores (tô chorando muito?)

 Solução: utilizar modelos preditivos para identificar as compesanções de maior risco

• Como faz: cria um ranking de compensações de maior risco

- Compensação de crédito: utilizar um débito para quitar um crédito (pode ser mesmo tributos ou outro)
- Ex: pagamento a maior (erro na hora de pagar um "carnê leão")
 pode ser restituído (receber o valor de volta) ou compensado
- Vantagem da compensação: processo mais célere em comparação com a restituição



- Contribuinte compensa o crédito e pode tirar uma certidão negativa logo depois
- Cabe à RFB homologar a compensação em 5 anos
- Caso a RFB não avalie a compensação no prazo, ocorre homologação tácita

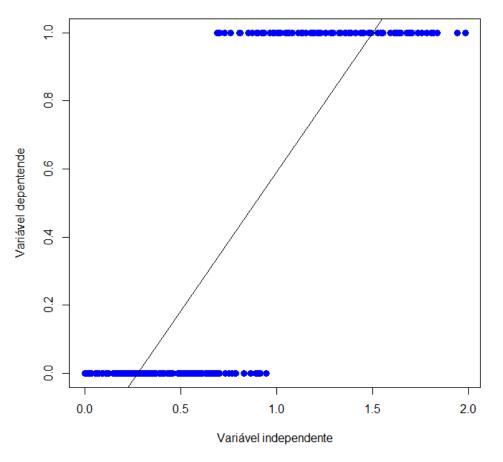
 Existe sistema que analisa, com base em alguns parâmetros de risco de indeferimento (não acolhimento do crédito solicitado), homologa, não homologa ou classifica o processo de solicitação para análise manual do Auditor-Fiscal.

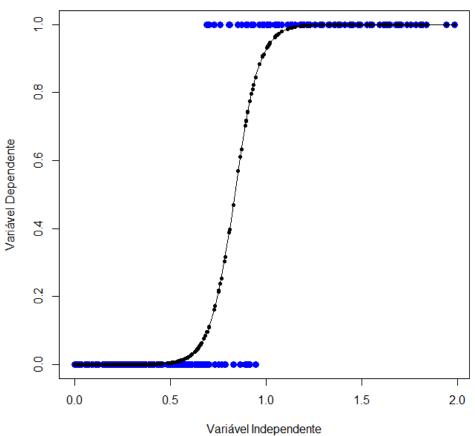
 Estoque de processos de análise manual se elevou sobremaneira. Classificar melhor as solicitações para escolher aqueles com maior risco de não homologação (indeferimento)

Regressão Linear vs Regressão logística

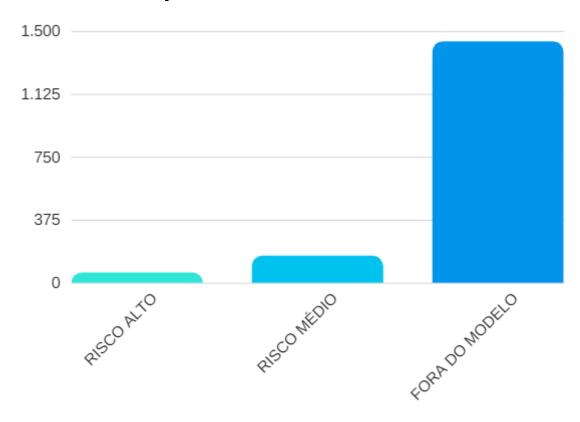
$$Y \approx \beta_0 + \beta_1 x_1 + \epsilon$$
,

$$log(\frac{P(X)}{1 - P(X)}) = \beta_0 + \beta_1 X_1$$

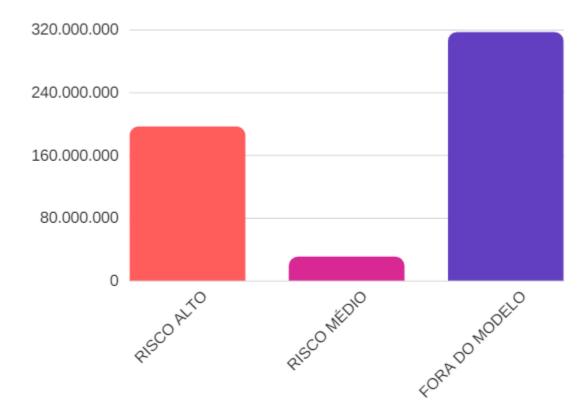




Resultados quantidade



valor (R\$)



Outras Iniciativas

AJNA

- Análise de Raios-X de containers (AJNA)
- Deep neural networks e random forest regressors
 - SciKit-Learn and TensorFlow
- Primeiros resultados automáticos
 - Containers falsamente vazios
 - Identificação de imagens similares
 - Autoencoders encontram imagens similares em meio a milhões delas
 - Ajuda a análise humana

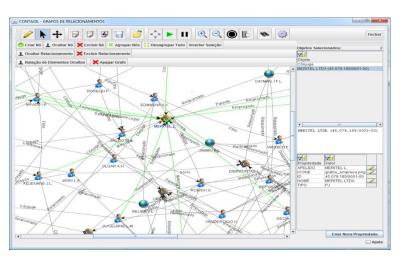
AJNA

- Em desenvolvimento como foco em drogas e armas
- Será integrado ao Sisam
 - Erros de NCM
 - Erros em quantidades
 - Problema difícil,
 - São milhões de produtos, divididos em 10000 classificações,
 - Misturados nos mesmos containers
 - Imagem de um só ângulo
 - Mesmo que n\u00e3o seja poss\u00edvel identificar as mercadorias autonomamente, pode ser poss\u00edvel eliminar suspeitas levantadas pelo Sisam.

ContÁgil

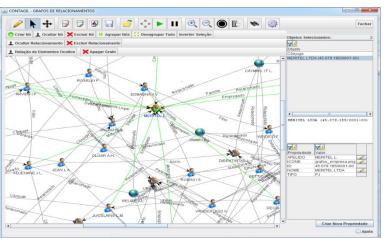
- O ContÁgil é uma grande ferramenta de recuperação e análise de dados usado em todoa RFB
- Ele possui um ambiente genérico de aprendizado de máquina
 - Regressão logística, Naives Bayes, Redes Neurais, Árvores de decisão, etc
 - Ambiente interativo
 - Scripts em Python, Javascript ou Script Visula (estilo fluxograma)
- Integração com Python, R, Weka, DL4J





ContÁgil

- Acesso a ReceitaData em Hadoop
 - Integração com Spark, HBase, HDFS, Impala e Hive
- Atua como plataforma para outras ferramentas
 - Aniita: aduana
 - Farol: automatização de um enormidade de tarefas repetitivas
- Analisa grafos de relacionamento
 - NEO4J
 - Análise de evolução patrimonial (SABRE)
 - Usado na Lava Jato



Triagem de Processos

- Os julgadores são mais rápidos julgando processos parecidos
- Seguimos exemplos de outros órgão públicos
 - STJ (Vitor), CARF, etc
- Recebemos dicas da UnB
- Nos focamos na malha da pessoa física
- Testamos XGBoost e Regressão logística
- Ainda tentaremos CNNs e uma estratégia própria de aprendizado supervisionado
- Poucos exemplos rotulados para maior parte dos tipos
- Primeiros resultados são bons para alguns tipos de processo, mas fraco para outros

Labin 03

- Ovelha Negra
 - Discrepâncias patrimoniais entre vizinhos
 - Geoprocessamento
- Detecção de fraudes na emissão de CPFs
 - Aprendizado de máquina

Obrigado!

Leon Sólon da Silva – leon.silva@rfb.gov.br

